
1

Machine Learning for Cybersecurity: Network-based
Botnet Detection Using Time-Limited Flows

Author: Stephanie Ding Mentor: Julian Bunn
California Institute of Technology

Email: sding@caltech.edu

September 26, 2017

Abstract
Botnets are collections of connected, malware-infected hosts that can be controlled
by a remote attacker, and are one of the most prominent threats in cybersecurity as
they can be used for a wide variety of purposes, such as denial-of-service attacks,
spam or bitcoin mining. We propose a two-stage detection method, using supervised
and unsupervised machine learning techniques to distinguish between botnet and
non-botnet network traffic. In the first stage, we examine network flow records
generated over limited time intervals, which provide a concise, but partial summary
of the complete network traffic profile, and classify flows as malicious or benign based
on a set of extracted statistical features. In the second stage, we perform clustering
on internal hosts involved in previously identified malicious communications to
determine which hosts are most likely to be botnet-infected. Using existing datasets,
we demonstrate the feasibility of our method and implement a proof-of-concept, real-
time detection system that aggregates the results of multiple classifiers to identify
infected hosts.

1 Introduction

In the twenty-first century, networked devices have become an integral part of any business or
organization, supporting an extensive number of applications and services such as access to the
World Wide Web, multimedia sharing, file storage, or instant messaging and email. The
growing number and complexity of networked devices means that they are increasingly being
targeted by cybercriminals, who exploit vulnerable devices for malicious purposes – particularly
due to the advent of the Internet of Things (IoT), which represent new potential attack vectors
as modern malware is now capable of taking over devices such as surveillance cameras and
‘smart’ household devices with built-in network capabilities. One of the common uses for
compromised devices is to integrate them into a botnet – a collection of connected hosts (“bots”

2

or “zombies”) infected with malware that allows them to be controlled by a remote host (the
“botmaster”). Botnets are powerful assets for attackers due to their versatility as they can be
employed for a wide variety of purposes, such as Distributed Denial-of-Services (DDoS) attacks,
email phishing and spam, and, with the advent of cryptocurrencies in recent years, distributed
bitcoin mining, making them one of the most prominent threats in the cybersecurity field.

 Presently, botnets are responsible for the majority of online email spam, identity theft,
phishing, fraud, ransomware and denial-of-service attacks, and are substantial sources of
damage and financial loss for organizations and business. Taking action to neutralize the
potential impact and harmful behaviors of botnets have become essential steps in almost all
malware mitigation strategies, resulting in the need for rapid and effective identification of
botnet infections.

1.1 Background and related work
Historically, botnet detection was achieved through setting up honeypots or honeynets –
security mechanisms that appear to contain data and are a legitimate part of some network,
but are in fact isolated systems designed to detect and/or counteract attempts at intrusion
into the network – and developing specific signatures for various types of botnets in order to
defend against future attacks of the same type. These signatures are then used for payload
analysis techniques such as deep packet inspection (DPI), which requires individually
inspecting every packet transmitted on the network and matching for malicious packet
signatures. While payload inspection techniques usually achieve a high level of identification
accuracy, they are extremely limited for several reasons:

1. Cost and speed. The development of large-scale honeypots is a significant time and
economic investment, and multiple honeypots may be required to capture a variety of
botnet signatures. Furthermore, inspecting every packet sent through the network is a
time and resource-intensive process due to the sheer volume of packets that must be
processed. This makes packet inspection techniques unsuitable for real-time detection
as analysis is usually performed after an attack has occurred, making early prevention
and mitigation of attacks difficult.

2. Privacy concerns. Detailed analysis at the packet level often exposes private
information sent by network users, and is an undesirable violation of user privacy.

3. Vulnerable to obfuscation and zero-days. Signature-based detection methods are not
versatile and rely on matching for specific existing patterns that are known. This means
they cannot be generalized to new and emerging types of botnet attacks, and can be
bypassed by bots that utilize encryption or obfuscation to conceal their communications.

Network-centric, traffic analysis-based schemes have become increasingly popular as an

alternative to signature-based detection schemes as they do not suffer from the same limitations
of payload inspection techniques. These methods often focus on examining network flows, which
is conventionally defined as a sequence of packets over some period of time, grouped by source
IP, source port, destination IP, destination port, and protocol – essentially a summary of a

3

communication channel between two hosts. The underlying assumption of flow-based network
analysis is that botnet traffic is distinguishable from regular network traffic in some manner,
which can be determined through statistical features irrespective of individual packet contents.
This makes a flow-based approach less susceptible to encryption or obfuscation techniques, as
well as vastly reducing the amount of data that needs to be processed. Furthermore, many
types of bots may exhibit similar patterns of behavior despite having different signatures,
making a flow-based approach more generalizable.

In recent years, there has also been an increase in the amount of literature on the topic

of applying machine learning for automated botnet detection using network flows. Strayer et
al. [1] was one of the first to demonstrate the use of supervised machine learning to identify
IRC botnets, successfully classifying TCP flows with low (< 3%) false positive and negative
rates although it models TCP as the primary communication channel of botnet traffic. Masud
et al. [2] similarly was able to detect botnet traffic using machine learning using a flow-based
approach and performing classification on host-level forensic and deep packet inspection in
order to differentiate between benign and botnet traffic. Saad et al. [3] proposed a new approach
to identify traffic that comprises the C&C stage of the botnet life cycle and applied machine
learning to this subset of network traffic in order to detect P2P botnets, identifying both host-
based and flow-based traffic features. Camelo et al. [4] presented a new method of identifying
botnet activity by appropriating features from several data feeds such as DNS domain responses,
live communication directed to C&C servers, and performing machine learning on a graph
representation of the data, allowing them to identify botnets as singly-connected components
of known malicious servers (domains) and infected machines (IPs) to a reasonable degree of
accuracy. The success of these methods confirms that botnet traffic exhibits certain
characteristics and communication patterns that can be exploited using classification
techniques.

2 Approach

Many existing flow-based detection approaches analyze flows between two hosts in its entirety,
which is not always feasible as a flow may span several hours to several days. We propose a
detection approach that examines flows generated over short time windows (300 seconds),
which is short enough such that analysis and detection can occur in relatively close to real
time, while still being long enough to capture interesting characteristics of network traffic. To
avoid treating the same flow split across multiple time windows as completely discrete entities
(and thus losing the temporal characteristics of the flow data), we generate the windows such
that each window contains 150 seconds of overlap with the previous window.

 For each window, we extract a set of flow features from each flow and then apply a
two-stage machine learning process to determine infected network hosts. In stage 1, we utilize
supervised learning by training a classifier on existing datasets to perform binary classification
and determine which flows are likely to be botnet flows. In stage 2, we apply unsupervised
learning and cluster the hosts involved in the identified botnet flows into two clusters, benign

4

and anomalous, based on a separate set of host-based features. We detect whether a host is
infected or not by examining a sequence of windows and analyzing the evolution of the host’s
cluster membership over time. Finally, to demonstrate the potential real-world applications of
our detection method, we build a proof-of-concept application designed for use in a network
monitoring situation and illustrate how our detection scheme can be applied for real-time
detection.

3 Method

3.1 System overview

Figure 3.1.1. Overview of proposed method in a detection system.

ST
A

G
E

 1

Network
interface

Argus
Flow
parser

݉ଵ
݉ଶ

⋮
݉௡

Trained classifiers
300 second
packet capture

Flow
summaries

Flow IDs and flow
feature vectors

Botnet flows

ST
A

G
E

 2

Generate host-
based features

Agglomerative
hierarchical
clustering

Host feature
vectors

Update host score
based on cluster

membership

Anomalous and
benign clusters

GUI
Highlight
infected hosts

5

3.2 Datasets
The dataset used is the CTU-13 dataset [5] which is a publicly available, labelled dataset
developed by researchers at the Czech Technical University containing thirteen separate
scenarios of mixed botnet, background and normal traffic. In each scenario, the researchers
captured network traffic of the entire university network at an edge router for a period of time,
during which a botnet infection was simulated on one or several networked virtual machines
by running a specific type of malware. Each scenario contains a packet capture (.pcap) of the
botnet traffic only, and a truncated .pcap of the full packet capture which included the
complete headers of each packet but removed packet payloads to protect the anonymity of
network users. The full packet capture was also processed using the utility Argus (the Audit
Record Generation and Utilization System) [6] to generate bidirectional network flow summaries
(in .binetflow format), with a limited number of features output for each flow. Each .binetflow
file was labelled by the researchers to identify particular communications as either a botnet
flow, a normal flow, or a background flow.

 We examined seven of the thirteen scenarios – scenarios 5, 6, 7, 9, 11, 12 and 13 – with
a particular emphasis on scenario 9 as it was one of the larger captures and contained the most
infected hosts. Although we also applied the detection scheme to scenario 10, the results were
not included in this report due to the capture being incomplete – the authors reported that the
truncated .pcap in that scenario had been unexpectedly terminated early due to a lack of disk
space. [7] The other unused scenarios featured a repeat of malware in the selected scenarios,
but were less desirable due to their length or the number of infected hosts. Nevertheless, the
selected scenarios cover a diverse range of botnets that vary in the number of infected network
hosts, protocols, and malicious actions, and are representative of a large majority of behaviors
found in modern botnets. Figure 3.2.1 describes each scenario in further detail:

Scenari
o

Botnet
name

Infected
hosts

Capture
duration (hrs)

Protocol
Behaviors and
characteristics

5 Virut 1 11.63 HTTP
Spam, port scan, web
proxy scanner.

6 Menti 1 2.18 HTTP
Port scan, proprietary
C&C, RDP.

7 Sogou 1 0.38 HTTP
Connects to Chinese
hosts.

9 Neris 10 5.18 IRC
Spam, click fraud,
port scanning. Bitcoin
miner.

11 Rbot 3 0.26 IRC ICMP DDoS.

12
NSIS.a
y

3 1.21 P2P Synchronization.

13 Virut 1 16.36 HTTP
Spam, port scan,
captcha and web mail.

Figure 3.2.1. Details of selected scenarios in the CTU-13 dataset.

6

3.3 Stage 1: Supervised learning (binary classification)

3.3.1 Flow extraction and feature selection
A feature is a characteristic of a flow over a period of time, which may either be extracted
directly from packet headers (for example, source and destination IP) or calculated from the
packet captures (such as packet interarrival time). A variety of flow exporter utilities exist
that have the capability to process packet capture files and extract similar flow features. During
early stages of the project, we experimented using a variety of flow exporters such as
NETMATE [8], Tranalyzer2 [9], and CICFlowMeter [10].We ultimately decided to utilize Argus
for flow generation as it was the tool used by the authors of the CTU-13 dataset, and the
varying behaviors of flow exporters often resulted in other tools generating flows that differed
from the network flow file provided in the scenarios.

Argus is capable of generating bidirectional network flow data generator with detailed
statistics about each flow, including reachability, load, connectivity, duration, rate, jitter and
other metrics. 40 features were selected to describe each flow, based on domain knowledge and
some assumptions about the behavior of botnets. (See Appendix A for the full list of features
extracted with Argus, including descriptions.)

The features that comprise the standard 5-tuple (saddr, sport, daddr, dport, proto)

were used to define the flow ID for each flow. Almost all features are numeric in nature, with
the exception of two categorical values direction and state, which were mapped to discrete
integer values as shown in figures 3.3.2 and 3.3.3.

For a specified packet capture, Argus outputs a tab-delimited text file where each line

contains the selected features for a particular flow, facilitating an easy process of parsing the
flows into array format for further processing. Features in the flow ID were not included in the
feature vectors used to train the classifiers, as we wish to select a set of network-agnostic,
universal features that can be applied to traffic from any network, and different networks may
use different IP and port numbers. Thus, each flow is identified by its flow ID and represented
numerically by a feature vector of the remaining 40 features, which was then used to train the
classifiers (See Appendix B for the relative importances of each feature, and section 4.2.4 for a
comparison of classifier performance when trained on a reduced feature space).

3.3.4 Training models on limited time intervals
For each scenario, a training dataset was generated with a ratio of 1:10 botnet to non-botnet
flows. This ratio was chosen due to the highly imbalanced nature of the captures, which
contained significantly more background and normal flows (around 90% to 97% of the entire
dataset) compared to botnet flows (around 0.15% to 8.11%). We found the ratio of 1:10 to be
sufficiently similar to the real datasets while containing adequate samples of botnet flows to
obtain good classifier accuracy (see section 4.2.3 for a brief comparison on training set balance
and classifier accuracy).

7

As the captures vary in length, some contain significantly more flows than others. On

shorter captures, a training dataset with 1,000 botnet flow samples and 10,000 non-botnet flow
samples was generated, while on longer datasets a training dataset containing 10,000 botnet
flow samples and 100,000 botnet flow samples was generated. These datasets were produced
using the following procedure:

1. Using Wireshark [11], split the truncated packet capture of the complete traffic into

windowed, sequential .pcap files of 300 seconds, with 150 seconds overlap between each
window.

Directio
n

Valu
e

-> 0

?> 1

<- 2

<? 3

<-> 4

<?> 5

Figure 3.3.2. Numerical
mapping for categorical
feature ‘direction’.

State
Valu
e

STA 0

RST 1

CON 2

FIN 3

INT 4

ECO 5

URHPRO 6

URP 7

RED 8

REQ 9

URN 10

URH 11

ACC 12

RSP 13

ECR 14

TXD 15

NNS 16

URFIL 17

NRS 18

CLO 19

URF 20

URO 21

SRC 22

DCE 23

URNPRO 24

Figure 3.3.3. Numerical
mapping for categorical
feature ‘state’.

8

2. Using Argus, generate .binetflows for each of the windowed .pcaps, extracting the 40
features as listed in section 3.3.2.

3. Using the labelled .binetflow included in each scenario, build an initial profile of the
network traffic by parsing the flows within the file. The traffic profile consists of three
unique sets of flow IDs – normal, background and botnet – that are used for further
processing.

4. For each window, parse the associated .binetflow file to obtain an array of flow IDs and
a corresponding array of flow feature vectors.

5. Randomly sample an equal number of non-botnet flows from every window using
reservoir sampling. A flow is defined as a non-botnet flow if its flow ID is present in
either the normal or the background flow ID set in the previously generated traffic
profile. Assign these flows a ground truth label of 0.

6. Similarly, randomly sample an equal number of botnet flows from windows when the
botnet is active, using reservoir sampling. A flow is defined as a botnet flow if its flow
ID is present in the botnet flow ID set in the previously generated traffic profile. Assign
these flows a ground truth label of 1.

7. Concatenate the botnet and non-botnet flow feature vectors into a single array and
convert all NaN, invalid or empty values in vectors to 0 to produce the final array of
training examples (ݔ). Similarly, concatenate the ground truth labels to produce the
final array of expected outputs (ݕ).

8. Zip ݔ and ݕ and randomly shuffle the training set, ensuring that each vector or row in
the ݔ array continues to correspond to the correct output in the ݕ array.

Using the training dataset, a random forest classifier was trained with 100 estimators to

perform binary classification on flow feature vectors generated over 300 second windows, i.e.
output 0 if it determines a feature vector to be representative of a non-botnet flow, or output
1 if it determines a feature vector to be representative of a botnet flow. Random forests are an
ensemble learning method which operates by constructing a collection of decision trees, each
fit on a random subset of features or samples of the entire dataset, and produces an aggregated
result. The choice of random forests as the classification algorithm for stage 1 was due to its
robustness and high accuracy in initial tests, making it suitable for our intended purpose (see
section 4.2.1 for results of initial tests and comparisons with other supervised learning
algorithms).

3.4 Stage 2: Unsupervised learning (clustering)
Stage 2 of the detection process applied unsupervised learning on the results of stage 1, and
examined host-based characteristics, rather than flow-based characteristics. In each window,
the classifier was first used to identify potential botnet flows. An internal host is defined as
being involved in botnet communications if it is either the source IP or the destination IP of a
flow predicted by the classifier as being a botnet flow. For all hosts involved in botnet
communications, seven host-based features were computed:

1. The total number of predicted botnet flows that the host is involved in.

9

2. The total number of outgoing packets from the host involved in botnet flows.
3. The total number of incoming packets from the host involved in botnet flows.
4. The total number of incoming bytes from the host involved in botnet flows.
5. The total number of outgoing bytes from the host involved in botnet flows.
6. The total number of unique destination ports the host is communicating with.
7. The total number of unique destination IPs the host is communicating with.

These features were standardized such that the range of values for each feature had a mean

of 0 and a standard deviation of 1 (using scikit-learn’s StandardScaler) and were then used to
form a feature vector for each host. Agglomerative hierarchical clustering was applied on the
host feature vectors, using the standard Euclidean distance as the distance metric between
vectors and utilizing Ward linkage. Agglomerative clustering is a ‘bottom-up’ method of cluster
analysis, in which each data point begins in its own cluster, but are progressively merged into
other clusters higher up in the hierarchy. Ward linkage, also known as minimum variance
criterion, ensures that at each merging step, the pair of clusters that leads to the minimum
increase in total inter-cluster variance is chosen.

 We make the heuristic assumption that the majority of hosts on a network will not be
infected and only a small minority are infected, which was true for the datasets examined, and
label the smaller cluster as the anomalous/botnet cluster and the larger cluster as the
benign/non-botnet cluster. For each window, the hosts in the botnet cluster are assumed to be
infected during that timeframe of the window; however often a single window is insufficient to
determine the presence of botnet activity and examining the temporal nature of a host’s cluster
membership is a more accurate indicator of botnet activity. (See section 4.3 for a demonstration
of our detection scheme applied in a network monitoring scenario.)

4 Evaluation

4.1 Results

4.1.1. Stage 1
Due to the imbalanced nature of the dataset, accuracy is not a good predictor of classifier
performance as a high accuracy can be achieved simply by classifying the majority of flows as
non-botnet flows due to there being significantly higher numbers of non-botnet flows compared
to botnet flows. Thus, in stage 1, the performance of the binary classifier was evaluated with
metrics such as the true positive rate and true negative rate instead. A true positive is defined
as a flow vector with a botnet flow ID, during a time window when the botnet is running, that
is classified as a botnet flow. Similarly, a true negative is a botnet flow vector with a non-
botnet flow ID that is correctly classified as a non-botnet flow.

 A separate classifier was trained for each scenario examined, and the performance of
the classifier was evaluated on the specific dataset it was trained on. The following table
describes the number of flow vectors extracted from each dataset:

10

Scenari
o

Unique
botnet
flow IDs

Unique
normal
flow IDs

Unique
background
flow IDs

Number
of
windows

Average
number of
flows per
window

Total
botnet
flow
vectors

Total
non-
botnet
flow
vectors

5 856 4631 113667 13 32310 2326 417704

6 4621 7238 394056 52 48911 10960 2532403

7 44 1666 103950 9 47119 308 423766

9 93438 27749 1100291 125 67714 435076 8029131

11 8155 613 91436 7 45301 8855 308249

12 1972 7448 265712 30 40159 9234 1195532

13 32866 27183 943512 393 18136 98997 7028311

Figure 4.1.1. Statistics about flow vectors extracted from each scenario.

 True positive rate was calculated as ܴܶܲ ൌ
்௉

்௉ାிே
 and true negative rate was calculated

as ܴܶܰ ൌ
்ே

்ேାி௉
. The total TPR/TNR was calculated on the sum total of the true positives

and true negatives across all windows in a dataset, while for the average TPR/TNR reflects
the average of all individual TPR/TNR values calculated on each window separately. Note
that in many scenarios the botnet is not active for the first few windows; thus, the true positive
rate is only calculated during time windows when the botnet is running.

Figure 4.1.2. Total TPR/TNR across all scenarios examined.

0.8

0.85

0.9

0.95

1

5 6 7 9 11 12 13

Scenario

Total TPR/TNR

True positive rate True negative rate

11

Figure 4.1.3. Average TPR*/TNR across all scenarios examined

*calculated only during windows when the botnet is running

4.1.2 Stage 2
The performance evaluation of stage 2 reflects the number of local IP addresses that are
correctly clustered – a true positive in this context refers to a botnet host that is clustered into
the anomalous cluster during any window where the botnet is running, while a true negative
is a non-infected host clustered into the benign cluster. A false positive is any host clustered
into the anomalous cluster during a window when the botnet is not running, or a non-infected
host clustered into the anomalous cluster during windows when the botnet is running. Similarly,
a false negative is a botnet host clustered into the benign cluster during a window when the
botnet is running. A false negative is a botnet host that was not present in the anomalous
cluster during a window when the botnet is running – either as a result of being clustered
incorrectly into the majority cluster, or its flows not being identified by the classifier as botnet
flows (and thus it would be absent from both clusters as it was not identified as a host involved
in botnet communications).

 Due to the temporal nature of the windowed captures, Figure 4.1.4 depicts graphs of
the true positive rate, false positive rate and false negative rate across windows for each dataset
over all time windows in each scenario. Note that some scenarios (5, 6, 7, 13) only have a single
infected host, so if multiple false positives occur this is shown as a false positive rate of >1.

Figure 4.1.5 also lists the total true positives, true negatives, false positives and false
negatives for each scenario, which is a sum of the respective values across all time windows.
The total TPR/FPR is also calculated for each scenario and summarizes the results:

0.8

0.85

0.9

0.95

1

5 6 7 9 11 12 13
Scenario

Average TPR*/TNR

True positive rate True negative rate

12

True positive rate
False positive rate
False negative rate
Botnet start

Figure 4.1.4. Graphs of stage 2 TPR/FPR/FNR over time windows.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

Scenario 5
> 1*

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51

Scenario 6
> 1*

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9

Scenario 7
> 1*

0

0.2

0.4

0.6

0.8

1

1.2

1 21 41 61 81 101 121

Scenario 9
> 1*

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

Scenario 11
> 1*

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Scenario 12
> 1*

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351

Scenario 13
> 1*

13

Scenari
o

Total IPs TP FP FN TN TPR TNR

5 252 9 11 1 231 90.00% 95.45%

6 513 50 4 0 459 100.00% 99.14%

7 173 3 8 2 160 60.00% 95.24%

9 5549 427
15
1

16
1

4810
72.62% 96.96%

11 59 11 7 3 38 78.57% 84.44%

12 643 44 12 31 556 58.67% 97.89%

12 3471 392 50 0 3029 100.00% 98.38%

Figure 4.1.5. Summary of total confusion matrix results for each scenario.

4.2 Discussion
The classifier performance in stage 1 demonstrates that the selected 40 features are capable of
distinguishing between botnet and non-botnet flows to a high degree of accuracy (> 89%), even
if the flows are only generated over fixed-time windows and provide a limited perspective of
the entire network traffic. The true negative rate is consistently high, but this is likely a
reflection of the nature of the training set, in which there are significantly more non-botnet
flows.

 The classifier for scenario 12 had a significantly lower total TPR when compared to
other scenarios. This may have been due to scenario 12 featuring a P2P botnet, which, unlike
a traditional botnet with a single command & control server, communicates with a list of
trusted servers (including other infected machines) in a decentralized manner. The traffic is
likely to be less structured and have greater variance, appearing more similar to background
traffic and thus making the classification task more difficult. In contrast, scenarios 6 and 11,
which are a traditional C&C botnet and an ICMP DDoS botnet respectively, are much more
likely to have botnet traffic that is more structured and distinguishable from regular network
traffic, and thus the classifier trained for these scenarios have better performance.

In stage 2, generally, true infected hosts will be consistently clustered into the
anomalous cluster after the botnet begins running, while non-infected hosts (false positives)
are not consistently identified as such across consecutive windows. The detection scheme was
highly effective on scenarios 5, 6 and 13, which each contained one infected host, and
maintained a TPR of 1.0 throughout the duration of the botnet’s execution. Scenarios 7 and
11 also featured a TPR rate of 1.0 when the bot begins running, but the detection rate drops
over subsequent windows. The performance of the detector may have been affected by the
relatively short duration of these captures. Scenario 9 features a more realistic example of
botnet traffic on a network, as it contains ten infected hosts. After the botnet begins running,
a gradual increase in the detection rate is observed, reaching 1.0 during later stages of the
botnet’s execution.

14

Scenario 12 contained 3 infected hosts. The TPR for scenario 12 fluctuated between

0.33 and 0.66 during the majority of the botnet’s execution, indicating that 1 or 2 of the 3
infected hosts were consistently detected. This may have been due to the lower accuracy of the
scenario 12 classifier in stage 1, which impacts the number of flows identified as botnet flows.
It is likely that some botnet flows were incorrectly classified by the classifier as benign, resulting
in a host not being identified as involved in botnet communications.

4.2.1 Comparison of supervised learning algorithms
We initially tested a variety of supervised learning algorithms (Naïve Bayes, Support Vector
Machines, Decision Trees, Random Forests) to explore the differences in classifier performance
and to confirm our hypothesis that the selected 40 features facilitated distinction between
botnet and non-botnet flows. For each dataset, these tests were performed on flows generated
over the entire duration of the capture rather than over 300 second windows, using a random
30% of the entire dataset for training and the remaining 70% for testing. Figure 4.2.1 lists the
number of total flows, botnet flows, and the size of the training and testing datasets for each
scenario used in the test:

Scenario Total
flows

Botnet
flows

Training
flows

Testing
flows

8 71298 1666 23189 49909

9 916824 152804 275049 641777

11 476 2856 856 2000

12 78696 13116 23608 55088

13 400902 66817 120270 280632

Figure 4.2.1. Information about the datasets used in comparing classifier
performance.

 Figure 4.2.2 shows the performance of various supervised learning algorithms applied
to the same training datasets and evaluated on the same testing datasets:

While these tests were not particularly robust, the results obtained indicated that
support vector machines (SVMs) were time consuming to train, and thus were excluded from
the tests. The results of these tests also demonstrated that Naïve Bayesian classifiers had
significantly lower classification accuracy than the other algorithms, and while decision trees
produced high classification accuracy, the algorithm was prone to overfitting. Random forests
produced similarly high classification accuracy, but are more powerful models than decision
trees, being able to limit overfitting without substantially increasing error. This suggested that
random forests would be the most effective supervised learning algorithm for stage 1 of our
detection process.

15

Figure 4.2.2. Performance of various supervised learning algorithms, compared.

4.2.3 Effect of dataset balance on classifier performance
In each of the provided scenarios, there is a significantly higher number of non-botnet flows
when compared to botnet flows. Thus, generating a training dataset becomes difficult as the
number of botnet flows compared to non-botnet flows included in the training set will influence
the performance of the model. During initial testing stages, we trained another random forest
classifier on scenario 9, using a completely balanced dataset containing 10,000 botnet flows and
10,000 non-botnet flows.

 In the following figures, definitions of average TPR/FPR and total TPR/FPR are
consistent with previous definitions in section 4.1.1:

 1:10 training set 1:1 training set

Average TPs 3286 6264
Average FPs 752 2029
Average FNs 195 41
Average TNs 63481 62205
Average TPR 94.21% 99.32%
Average TNR 98.98% 96.77%

Figure 4.2.2. Comparison of the average metrics between the two datasets.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

ec
is

io
n

tr
ee

R
an

do
m

 f
or

es
t

N
aï

ve
 B

ay
es

D
ec

is
io

n
tr

ee

R
an

do
m

 f
or

es
t

N
aï

ve
 B

ay
es

D
ec

is
io

n
tr

ee

R
an

do
m

 f
or

es
t

N
aï

ve
 B

ay
es

D
ec

is
io

n
tr

ee

R
an

do
m

 f
or

es
t

N
aï

ve
 B

ay
es

D
ec

is
io

n
tr

ee

R
an

do
m

 f
or

es
t

N
aï

ve
 B

ay
es

8 9 11 12 13

Scenario

Comparison of supervised learning (classification) algorithms

True positive rate False positive rate

16

 1:10 training set 1:1 training set

Total TPs 410758 432220
Total FPs 93992 253565
Total FNs 24318 2856
Total TNs 7935139 7775574
Total TPR 94.41% 99.34%
Total TNR 98.83% 96.84%

Figure 4.2.3. Comparison of the total metrics between the two datasets.

The model trained on the balanced dataset increased in the number of false

positives by over twice the amount of the model trained on the 1:10 dataset, but also
reduced false negatives by almost ten times. These results illustrate that it is possible to
alter model performance and obtain increased TPR at the cost of more false positives, or
vice-versa.

4.2.4 Cluster visualization using t-SNE
t-SNE, or t-distributed stochastic neighbor embedding, is a machine learning algorithm for
dimensionality reduction, embedding data points in a higher dimensional space into two or
three dimensions for visualization [12]. We utilize t-SNE to reduce the 7-dimensional host feature
space to 2 dimensions and visualize the data points on a scatter plot in order to visualize the
clustering process for scenarios 9 and 10, which contain 10 infected hosts each.

 In the following plots, red dots denote true positives, which are botnet hosts correctly
clustered into the anomalous cluster, and blue dots denote true negatives, which are non-botnet
hosts correctly clustered into the benign cluster. Red crosses indicate false positives, which are
non-botnet hosts incorrectly clustered in the anomalous cluster, and blue crosses denote false
negatives, which are infected hosts incorrectly clustered in the benign cluster.

17

Figure 4.2.4. t-SNE of host feature vectors on some windows in scenario 9 when
the botnet was inactive. A lack of structure in the underlying data is observed and
the anomalous cluster consists of a few isolated edge points.

Figure 4.2.5. t-SNE of host feature vectors on some windows in scenario 9 when
the botnet was active. Separation between points corresponding to botnet and non-
botnet hosts is observed, despite the clustering algorithm failing to identify the
correct clusters in all cases

18

From the t-SNE plots, it can be seen that during windows when the botnet is not running,
there is no apparent structure to the points and the anomalous cluster largely consists of a few
isolated points that are furthest from the remaining points. However, during windows when
the botnet is active, the plots clearly indicate some degree of separation between points
corresponding to botnet hosts and points corresponding to non-botnet hosts.

This was also observed with dataset 10 – although the classifier and clustering process

produced extremely poor results, the t-SNE plots demonstrated a clear separation between
botnet and non-botnet hosts, as seen in figure 4.2.3:

Figure 4.2.6. t-SNE of host feature vectors on some windows in scenario 10 when
the botnet was inactive.

These plots suggest an underlying structure within the data, implying that although the

current clustering algorithm does not correctly cluster the infected hosts in all windows, other
clustering methods may be able to identify the structure and separate infected and non-infected
hosts with a higher degree of accuracy.

19

Figure 4.2.7. t-SNE of host feature vectors on some windows in scenario 10 when
the botnet was active. Although the clustering algorithm produced incorrect
clusters, the intended clusters of botnet and non-botnet hosts are observable.

4.3 Building a proof-of-concept detection and network monitoring system
To demonstrate the potential practical applications of our detection method in a real-world
network monitoring scenario, we built a graphical application using PyQt4 [13] and pyqtgraph
[14] that operates continuously on 300 second windows of network traffic.

The detector utilizes multiple trained classifiers that each detects a different type of
botnet, and aggregates their outputs to identify botnet flows. Currently, all 7 classifiers that
trained on each of the CTU-13 scenarios are used concurrently; as these scenarios contain a
variety of different bots and we believe that they should be sufficient for identifying the
majority of present-day botnet activity. However, the application is also extensible and
supports the additional or removal of models, allowing users to customize detection for their
purposes or to add new models for emerging botnet types.

In each 300 second window, flows are extracted and each model performs classification
on the flows, corresponding to stage 1 of our detection process A flow is considered to be a
potential botnet flow if it is classified as malicious by any one of the classifiers, and all such
flows are then processed in stage 2 of the detection process, in which host-based features are
generated and host-based clustering is applied. Each host is assigned an instantaneous binary
score of 0 if it was clustered in the normal cluster, or an instantaneous score of 1 if it was in
the anomalous cluster. The instantaneous score in that window is then used to update the
host’s overall score, which is an exponentially weighted moving average (EWMA) of the host’s
past instantaneous scores, using the parameter ߙ ൌ 0.3. The host’s overall score reflects its
likelihood of being an infected host.

20

Figure 4.3.1. botd, the machine-learning based botnet detector.

EWMA is a method of smoothing time series data that assigns exponentially decreasing
weights to older data to emphasize on newer, immediate points and their neighborhood. The
equation for EWMA is:

௧ݏ ൌ ߙ ⋅ ௧ݔ ൅ ሺ1 െ ሻߙ ⋅ ௧ିଵݏ

where 0 ൏ ߙ ൏ 1 is the smoothing factor (a value of ߙ closer to 1 reduces the smoothing), ݏ௧ is
the new overall host score, ݔ௧ is the instantaneous score at the current time, and ݏ௧ିଵ is the
previous overall score. EWMA was used to assign scores to hosts due to the observation that
true infected hosts are consistently clustered into the anomalous cluster across multiple
windows, while non-infected hosts may occasionally appear in the anomalous cluster as false
positives but fail to maintain anomalous cluster membership continuously. This scoring method
ensures that true infected hosts will maintain a high score over time, while false positives may
obtain an instantaneous score of 1 in some window, but the value will quickly decay over
subsequent windows.

 The interface of our detector provides two main functions. The upper graph area allows
users to filter by selected model and selected internal host IP to view a graph of the number
predicted botnet flows over time by the selected model associated with the selected IP. This
was based on the observation that when a botnet begins running on a network, a noticeable
increase in botnet activity should occur, which should be detected by the models. Although a
number of false positives may occur in any window, resulting in non-botnet flows being
misclassified as botnet flows, the number of false positives for a model remains a relatively

21

constant number and appears as a standard noise signal, as shown in figures 4.3.2 and 4.3.3.
In contrast, graphs of true infected hosts display a noticeable increase in botnet flow for a
specific model, as shown in figures 4.3.3 and 4.3.4.

 The lower part of the interface provides a tabular view of all internal hosts and their
associated score. We apply a simple heuristic to highlight a host in red if it maintains a score >
0.9 for the past three consecutive windows, and mark it as an active bot. If a host was
historically marked active, but is not currently active, it will be highlighted in yellow. All other
hosts appear white by default. The combination of the host list and the graph provides a rapid
visual indicator of anomalous behavior on a network, prompting users to check potentially
suspicious hosts for botnet activity and terminate the associated machines before substantial
damage or malicious activity can be carried out.

Figure 4.3.2. Number of predicted botnet flows by classifier trained on scenario
9 over time associated with 147.32.84.68, a background host in scenario 9.

22

Figure 4.3.3. Number of predicted botnet flows by classifier trained on scenario
9 over time associated with 147.32.85.30, a background host in scenario 9.

Figure 4.3.4. Number of predicted botnet flows by classifier trained on scenario
9 over time associated with 147.32.84.165, an infected host in scenario 9.

23

Figure 4.3.5. Number of predicted botnet flows by classifier trained on scenario
9 over time associated with 147.32.84.191, a background host in scenario 9.

 The following screenshots demonstrate the usage of botd to detect botnet activity in
CTU-13 scenario 9:

Figure 4.3.6. A window from before the botnet begins running. Various hosts are
identified as potentially infected, but these are false positives and their score rapidly
decays over subsequent windows.

24

Figure 4.3.7. A window from the early stages of the botnet infection. True
infected hosts are beginning to be identified as active bots.

Figure 4.3.8. A window from a later stage of the infection, where the botnet has
been active for some time and botnet traffic is at a peak. All infected hosts are
identified as active bots.

25

Figure 4.3.9. A window from after the botnet is terminated. Previous identified
hosts remain highlighted as a visual indicator for users to check for anomalies on
the selected hosts.

5 Conclusion

The results of this project show that it is possible to distinguish between botnet and non-
botnet network flows to a high degree of accuracy (> 0.89 TPR), even if the flows are generated
over limited time windows and provide an incomplete representation of the complete network
traffic profile. This makes time-limited flows suitable for the purpose of real-time detection.
Furthermore, the two-stage process of classification and clustering is able to effectively identify
infected hosts for several classes of malware. We demonstrate the practical applications of this
method method building a prototype real-time detection system and testing it on CTU scenario
9, successfully identifying all 10 true infected hosts with a minimal number of false positives.

 Although our current clustering method is not able to produce the ideal clusters
correctly in all windows, t-SNE visualization of the host data points indicates strong
separability between the botnet hosts and non-botnet hosts. This has implications for further
research in this area as clustering could be improved by using different algorithms in order to
detect the underlying structure.

One limitation of our work is that the classifiers are trained on existing botnet data,
making our detection method potentially vulnerable to new and emerging types of botnets
which may have different traffic patterns. Furthermore, as we rely on statistical features of
flows for classification, attackers may evade detection through varying these characteristics if
they are known. Additionally, our criterion for labelling the normal and anomalous cluster is
presently only a heuristic that is valid for the datasets we have been examining, and is not

26

true of all networks. Developing a more robust method of identifying normal and anomalous
clusters based on intra-cluster variance is necessary to generalize this detection scheme to other
types of botnets.

Appendix A

The following table lists all flow features extracted with Argus:

Argus field name Feature description

srcid argus source identifier.

stime record start time

ltime record last time.

flgs flow state flags seen in transaction.

seq argus sequence number.

smac, dmac source or destination MAC addr.

soui, doui oui portion of the source or destination MAC addr

saddr, daddr source or destination IP addr.

proto transaction protocol.

sport, dport source or destination port number.

stos, dtos source or destination TOS byte value.

sdsb, ddsb source or destination diff serve byte value.

sco, dco source or destination IP address country code.

sttl, dttl src -> dst (sttl) or dst -> src (dttl) TTL value.

sipid, dipid source or destination IP identifier.

smpls, dmpls source or destination MPLS identifier.

spkts, dpkts src -> dst (spkts) or dst -> src (dpkts) packet count.

sbytes, dbytes
src -> dst (sbytes) or dst -> src (dbytes) transaction
bytes.

sappbytes, dappbytes
src -> dst (sappbytes) or dst -> src (dappbytes)
application bytes.

sload, dload source or destination bits per second.

sloss, dloss source or destination pkts retransmitted or dropped.

sgap, dgap
source or destination bytes missing in the data stream.
Available after argus-3.0.4

dir direction of transaction

sintpkt, dintpkt source or destination interpacket arrival time (mSec).

sintdist, dintdist
source or destination interpacket arrival time
distribution.

sintpktact, dintpktact
source or destination active interpacket arrival time
(mSec).

27

sintdistact,
dintdistact

source or destination active interpacket arrival time
(mSec).

sintpktidl, dintpktidl source or destination idle interpacket arrival time (mSec).

sintdistidl, dintdistidl source or destination idle interpacket arrival time (mSec).

sjit, djit source or destination jitter (mSec).

sjitact, djitact source or destination active jitter (mSec).

sjitidle, djitidle source or destination idle jitter (mSec).

state transaction state

suser, duser source or destination user data buffer.

swin, dwin source or destination TCP window advertisement.

svlan, dvlan source or destination VLAN identifier.

svid, dvid source or destination VLAN identifier.

svpri, dvpri source or destination VLAN priority.

srng, erng start or end time for the filter timerange.

stcpb, dtcpb source or destination TCP base sequence number

tcprtt
TCP connection setup round-trip time, the sum
of ’synack’ and ’ackdat’.

synack
TCP connection setup time, the time between the SYN
and the SYN_ACK packets.

ackdat
TCP connection setup time, the time between the
SYN_ACK and the ACK packets.

tcpopt

The TCP connection options seen at initiation. The
tcpopt indicator consists of a fixed length field, that
reports presence of any of the TCP options that argus
tracks.

inode ICMP intermediate node.

offset record byte offset infile or stream.

spktsz, dpktsz
histogram for the source (spktsz) or destination (dpktsz)
packet size distribution

smaxsz, dmaxsz
maximum packet size for traffic transmitted by the
source (smaxsz) or destination (dmaxsz).

sminsz, dminsz
minimum packet size for traffic transmitted by the source
or destination.

dur duration of a flow

rate, srate, drate packets per second

trans aggregation record count.

runtime
total active flow run time. This value is generated
through aggregation, and is the sum of the records
duration.

mean average duration of aggregated records.

stddev standard deviation of aggregated duration times.

28

sum total accumulated durations of aggregated records.

min minimum duration of aggregated records.

max maximum duration of aggregated records.

pkts total transaction packet count.

bytes total transaction bytes.

appbytes total application bytes.

load bits per second.

loss pkts retransmitted or dropped.

ploss percent pkts retransmitted or dropped.

sploss, dploss
percent source or destination pkts retransmitted or
dropped.

abr ratio between sappbytes and dappbytes

Appendix B

The following chart illustrates the relative importances of the selected features as determined
by the random forest classifier, averaged across all scenarios.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

sT
tl

sM
in

P
kt

Sz
sM

ax
P

kt
Sz

dT
tl

St
at

e
Sr

cB
yt

es
pS

rc
L
os

s
SI

nt
P

kt
A

ct
dM

ax
P

kt
Sz

D
st

B
yt

es
dM

in
P

kt
Sz

R
at

e
SI

nt
P

kt
D

ur
M

ax
R

un
T

im
e

M
ea

n
M

in
D

ir
D

In
tP

kt
Id

l
Su

m
Sr

cL
oa

d
L
oa

d
D

st
P

kt
s

D
In

tP
kt

Sr
cR

at
e

Sr
cJ

it
A

ct
D

st
L
oa

d
D

st
Ji

tt
er

SI
nt

P
kt

Id
l

D
st

R
at

e
Sr

cP
kt

s
Sr

cJ
it

te
r

D
In

tP
kt

A
ct

D
st

Ji
tA

ct
pD

st
L
os

s

Average importance of each feature

29

6 References

[1] W. T. Strayer, D. Lapsely, R. Walsh and C. Livadas, “Botnet detection based on
network behaviour,” Advances in Information Security, vol. 36, pp. 1-24, 2008.

[2] M. Masud, T. Al-khateeb, L. Khan, B. Thuraisingham and K. Hamlen, “Flow-based
identification of botnet traffic by mining multiple log files,” in First International
Conference on Distributed Framework and Applications, 2008.

[3] S. Saad, I. Traore and A. Ghorbani, “Detecting P2P botnets through network behavior
analysis and machine learning,” 2011 Ninth Annual International Conference on Privacy,
Security and Trust, 2011.

[4] P. Camelo, J. Moura and L. Krippahl, “CONDENSER: A Graph-Based Approach for
Detecting Botnets,” 2014.

[5] S. Garcia, M. Grill, H. Stiborek and A. Zunino, “An empirical comparison of botnet
detection methods,” Computers and Security Journal, vol. 45, pp. 100-123, 2014.

[6] QoSient, LLC., “Argus: Auditing network activity,” 1 June 2016. [Online]. Available:
https://qosient.com/argus/index.shtml. [Accessed 22 September 2017].

[7] S. Garcia, “CTU-Malware-Capture-Botnet-51 or Scenario 10 in the CTU-13 dataset.,” 05
May 2017. [Online]. Available: https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-
Capture-Botnet-51/. [Accessed 22 September 2017].

[8] S. Zander and C. Schmoll, “netmate-flowcalc,” 4 December 2016. [Online]. Available:
https://github.com/DanielArndt/netmate-flowcalc. [Accessed 22 September 2017].

[9] S. Burschka, B. Dupasquier and A. Fiaux, “Tranalyzer,” 23 June 2017. [Online].
Available: https://tranalyzer.com/. [Accessed 22 September 2017].

[10] A. H. Lashkari, G. Draper-Gil, M. S. Mamu and A. A. Ghorbani, “Characterization of
Tor Traffic Using Time Based Features,” in 3rd International Conference on Information
System Security and Privacy, Porto, 2017.

[11

]
Wireshark Foundation, “Wireshark,” 29 August 2017. [Online]. Available:
https://www.wireshark.org/. [Accessed 22 September 2017].

[12] L. v. d. Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine
Learning Research, vol. 9, pp. 2579-2605, 2008.

[13] Riverbank Computing Limited, “PyQt4 Download,” 2016. [Online]. Available:
https://www.riverbankcomputing.com/software/pyqt/download. [Accessed 22 September
2017].

[14] L. Campagnola, “PyQtGraph,” 2012. [Online]. Available:
https://github.com/pyqtgraph/pyqtgraph. [Accessed 22 September 2017].

30

7 Acknowledgements

I would like to acknowledge my mentor, Dr. Julian Bunn for giving me the opportunity to
participate in the Caltech Summer Undergraduate Research Fellowship (SURF) program.
Thank you so much for your endless patience, continued support, insight and guidance
throughout this project.

I would also like to thank Bruce Nickerson and his family for the honor of being named
as the J. Weldon Green SURF Fellow for 2017. Thank you for your commitment to supporting
aspiring undergraduate researchers at Caltech – this project was only made possible by your
generous support and contribution towards the SURF program.

Finally, I would also like to thank Arun Viswanathan and Dr. K. Mani Chandy for
their assistance and input on technical aspects of this project.

