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Abstract 
Botnets are collections of connected, malware-infected hosts that can be controlled 
by a remote attacker, and are one of the most prominent threats in cybersecurity as 
they can be used for a wide variety of purposes, such as denial-of-service attacks, 
spam or bitcoin mining. We propose a two-stage detection method, using supervised 
and unsupervised machine learning techniques to distinguish between botnet and 
non-botnet network traffic. In the first stage, we examine network flow records 
generated over limited time intervals, which provide a concise, but partial summary 
of the complete network traffic profile, and classify flows as malicious or benign based 
on a set of extracted statistical features. In the second stage, we perform clustering 
on internal hosts involved in previously identified malicious communications to 
determine which hosts are most likely to be botnet-infected. Using existing datasets, 
we demonstrate the feasibility of our method and implement a proof-of-concept, real-
time detection system that aggregates the results of multiple classifiers to identify 
infected hosts. 

1 Introduction 

In the twenty-first century, networked devices have become an integral part of any business or 
organization, supporting an extensive number of applications and services such as access to the 
World Wide Web, multimedia sharing, file storage, or instant messaging and email. The 
growing number and complexity of networked devices means that they are increasingly being 
targeted by cybercriminals, who exploit vulnerable devices for malicious purposes – particularly 
due to the advent of the Internet of Things (IoT), which represent new potential attack vectors 
as modern malware is now capable of taking over devices such as surveillance cameras and 
‘smart’ household devices with built-in network capabilities. One of the common uses for 
compromised devices is to integrate them into a botnet – a collection of connected hosts (“bots” 
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or “zombies”) infected with malware that allows them to be controlled by a remote host (the 
“botmaster”). Botnets are powerful assets for attackers due to their versatility as they can be 
employed for a wide variety of purposes, such as Distributed Denial-of-Services (DDoS) attacks, 
email phishing and spam, and, with the advent of cryptocurrencies in recent years, distributed 
bitcoin mining, making them one of the most prominent threats in the cybersecurity field. 
 
 Presently, botnets are responsible for the majority of online email spam, identity theft, 
phishing, fraud, ransomware and denial-of-service attacks, and are substantial sources of 
damage and financial loss for organizations and business. Taking action to neutralize the 
potential impact and harmful behaviors of botnets have become essential steps in almost all 
malware mitigation strategies, resulting in the need for rapid and effective identification of 
botnet infections. 
 

1.1 Background and related work 
Historically, botnet detection was achieved through setting up honeypots or honeynets – 
security mechanisms that appear to contain data and are a legitimate part of some network, 
but are in fact isolated systems designed to detect and/or counteract attempts at intrusion 
into the network – and developing specific signatures for various types of botnets in order to 
defend against future attacks of the same type. These signatures are then used for payload 
analysis techniques such as deep packet inspection (DPI), which requires individually 
inspecting every packet transmitted on the network and matching for malicious packet 
signatures. While payload inspection techniques usually achieve a high level of identification 
accuracy, they are extremely limited for several reasons: 
 

1. Cost and speed. The development of large-scale honeypots is a significant time and 
economic investment, and multiple honeypots may be required to capture a variety of 
botnet signatures. Furthermore, inspecting every packet sent through the network is a 
time and resource-intensive process due to the sheer volume of packets that must be 
processed. This makes packet inspection techniques unsuitable for real-time detection 
as analysis is usually performed after an attack has occurred, making early prevention 
and mitigation of attacks difficult. 

2. Privacy concerns. Detailed analysis at the packet level often exposes private 
information sent by network users, and is an undesirable violation of user privacy. 

3. Vulnerable to obfuscation and zero-days. Signature-based detection methods are not 
versatile and rely on matching for specific existing patterns that are known. This means 
they cannot be generalized to new and emerging types of botnet attacks, and can be 
bypassed by bots that utilize encryption or obfuscation to conceal their communications. 

 
Network-centric, traffic analysis-based schemes have become increasingly popular as an 

alternative to signature-based detection schemes as they do not suffer from the same limitations 
of payload inspection techniques. These methods often focus on examining network flows, which 
is conventionally defined as a sequence of packets over some period of time, grouped by source 
IP, source port, destination IP, destination port, and protocol – essentially a summary of a 
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communication channel between two hosts. The underlying assumption of flow-based network 
analysis is that botnet traffic is distinguishable from regular network traffic in some manner, 
which can be determined through statistical features irrespective of individual packet contents. 
This makes a flow-based approach less susceptible to encryption or obfuscation techniques, as 
well as vastly reducing the amount of data that needs to be processed. Furthermore, many 
types of bots may exhibit similar patterns of behavior despite having different signatures, 
making a flow-based approach more generalizable. 

 
In recent years, there has also been an increase in the amount of literature on the topic 

of applying machine learning for automated botnet detection using network flows. Strayer et 
al. [1] was one of the first to demonstrate the use of supervised machine learning to identify 
IRC botnets, successfully classifying TCP flows with low (< 3%) false positive and negative 
rates although it models TCP as the primary communication channel of botnet traffic. Masud 
et al. [2] similarly was able to detect botnet traffic using machine learning using a flow-based 
approach and performing classification on host-level forensic and deep packet inspection in 
order to differentiate between benign and botnet traffic. Saad et al. [3] proposed a new approach 
to identify traffic that comprises the C&C stage of the botnet life cycle and applied machine 
learning to this subset of network traffic in order to detect P2P botnets, identifying both host-
based and flow-based traffic features. Camelo et al. [4] presented a new method of identifying 
botnet activity by appropriating features from several data feeds such as DNS domain responses, 
live communication directed to C&C servers, and performing machine learning on a graph 
representation of the data, allowing them to identify botnets as singly-connected components 
of known malicious servers (domains) and infected machines (IPs) to a reasonable degree of 
accuracy. The success of these methods confirms that botnet traffic exhibits certain 
characteristics and communication patterns that can be exploited using classification 
techniques. 
 

2 Approach 

Many existing flow-based detection approaches analyze flows between two hosts in its entirety, 
which is not always feasible as a flow may span several hours to several days. We propose a 
detection approach that examines flows generated over short time windows (300 seconds), 
which is short enough such that analysis and detection can occur in relatively close to real 
time, while still being long enough to capture interesting characteristics of network traffic. To 
avoid treating the same flow split across multiple time windows as completely discrete entities 
(and thus losing the temporal characteristics of the flow data), we generate the windows such 
that each window contains 150 seconds of overlap with the previous window. 
 
 For each window, we extract a set of flow features from each flow and then apply a 
two-stage machine learning process to determine infected network hosts. In stage 1, we utilize 
supervised learning by training a classifier on existing datasets to perform binary classification 
and determine which flows are likely to be botnet flows. In stage 2, we apply unsupervised 
learning and cluster the hosts involved in the identified botnet flows into two clusters, benign 
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and anomalous, based on a separate set of host-based features. We detect whether a host is 
infected or not by examining a sequence of windows and analyzing the evolution of the host’s 
cluster membership over time. Finally, to demonstrate the potential real-world applications of 
our detection method, we build a proof-of-concept application designed for use in a network 
monitoring situation and illustrate how our detection scheme can be applied for real-time 
detection. 
 

3 Method 

3.1 System overview 
 

   
Figure 3.1.1. Overview of proposed method in a detection system. 
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3.2 Datasets 
The dataset used is the CTU-13 dataset [5] which is a publicly available, labelled dataset 
developed by researchers at the Czech Technical University containing thirteen separate 
scenarios of mixed botnet, background and normal traffic. In each scenario, the researchers 
captured network traffic of the entire university network at an edge router for a period of time, 
during which a botnet infection was simulated on one or several networked virtual machines 
by running a specific type of malware. Each scenario contains a packet capture (.pcap) of the 
botnet traffic only, and a truncated .pcap of the full packet capture which included the 
complete headers of each packet but removed packet payloads to protect the anonymity of 
network users. The full packet capture was also processed using the utility Argus (the Audit 
Record Generation and Utilization System) [6] to generate bidirectional network flow summaries 
(in .binetflow format), with a limited number of features output for each flow. Each .binetflow 
file was labelled by the researchers to identify particular communications as either a botnet 
flow, a normal flow, or a background flow. 
 
 We examined seven of the thirteen scenarios – scenarios 5, 6, 7, 9, 11, 12 and 13 – with 
a particular emphasis on scenario 9 as it was one of the larger captures and contained the most 
infected hosts. Although we also applied the detection scheme to scenario 10, the results were 
not included in this report due to the capture being incomplete – the authors reported that the 
truncated .pcap in that scenario had been unexpectedly terminated early due to a lack of disk 
space. [7] The other unused scenarios featured a repeat of malware in the selected scenarios, 
but were less desirable due to their length or the number of infected hosts. Nevertheless, the 
selected scenarios cover a diverse range of botnets that vary in the number of infected network 
hosts, protocols, and malicious actions, and are representative of a large majority of behaviors 
found in modern botnets. Figure 3.2.1 describes each scenario in further detail: 
  

Scenari
o 

Botnet 
name 

Infected 
hosts 

Capture 
duration (hrs) 

Protocol 
Behaviors and 
characteristics 

5 Virut 1 11.63 HTTP 
Spam, port scan, web 
proxy scanner. 

6 Menti 1 2.18 HTTP 
Port scan, proprietary 
C&C, RDP. 

7 Sogou 1 0.38 HTTP 
Connects to Chinese 
hosts. 

9 Neris 10 5.18 IRC 
Spam, click fraud, 
port scanning. Bitcoin 
miner. 

11 Rbot 3 0.26 IRC ICMP DDoS. 

12 
NSIS.a
y 

3 1.21 P2P Synchronization. 

13 Virut 1 16.36 HTTP 
Spam, port scan, 
captcha and web mail.

Figure 3.2.1. Details of selected scenarios in the CTU-13 dataset. 
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3.3 Stage 1: Supervised learning (binary classification) 
 
3.3.1 Flow extraction and feature selection 
A feature is a characteristic of a flow over a period of time, which may either be extracted 
directly from packet headers (for example, source and destination IP) or calculated from the 
packet captures (such as packet interarrival time). A variety of flow exporter utilities exist 
that have the capability to process packet capture files and extract similar flow features. During 
early stages of the project, we experimented using a variety of flow exporters such as 
NETMATE [8], Tranalyzer2 [9], and CICFlowMeter [10].We ultimately decided to utilize Argus 
for flow generation as it was the tool used by the authors of the CTU-13 dataset, and the 
varying behaviors of flow exporters often resulted in other tools generating flows that differed 
from the network flow file provided in the scenarios.  
 

Argus is capable of generating bidirectional network flow data generator with detailed 
statistics about each flow, including reachability, load, connectivity, duration, rate, jitter and 
other metrics. 40 features were selected to describe each flow, based on domain knowledge and 
some assumptions about the behavior of botnets. (See Appendix A for the full list of features 
extracted with Argus, including descriptions.) 

 
The features that comprise the standard 5-tuple (saddr, sport, daddr, dport, proto) 

were used to define the flow ID for each flow. Almost all features are numeric in nature, with 
the exception of two categorical values direction and state, which were mapped to discrete 
integer values as shown in figures 3.3.2 and 3.3.3. 

 
For a specified packet capture, Argus outputs a tab-delimited text file where each line 

contains the selected features for a particular flow, facilitating an easy process of parsing the 
flows into array format for further processing. Features in the flow ID were not included in the 
feature vectors used to train the classifiers, as we wish to select a set of network-agnostic, 
universal features that can be applied to traffic from any network, and different networks may 
use different IP and port numbers. Thus, each flow is identified by its flow ID and represented 
numerically by a feature vector of the remaining 40 features, which was then used to train the 
classifiers (See Appendix B for the relative importances of each feature, and section 4.2.4 for a 
comparison of classifier performance when trained on a reduced feature space). 

 
3.3.4 Training models on limited time intervals 
For each scenario, a training dataset was generated with a ratio of 1:10 botnet to non-botnet 
flows. This ratio was chosen due to the highly imbalanced nature of the captures, which 
contained significantly more background and normal flows (around 90% to 97% of the entire 
dataset) compared to botnet flows (around 0.15% to 8.11%). We found the ratio of 1:10 to be 
sufficiently similar to the real datasets while containing adequate samples of botnet flows to 
obtain good classifier accuracy (see section 4.2.3 for a brief comparison on training set balance 
and classifier accuracy). 
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As the captures vary in length, some contain significantly more flows than others. On 

shorter captures, a training dataset with 1,000 botnet flow samples and 10,000 non-botnet flow 
samples was generated, while on longer datasets a training dataset containing 10,000 botnet 
flow samples and 100,000 botnet flow samples was generated. These datasets were produced 
using the following procedure: 

 
1. Using Wireshark [11], split the truncated packet capture of the complete traffic into 

windowed, sequential .pcap files of 300 seconds, with 150 seconds overlap between each 
window.  

Directio
n 

Valu
e 

-> 0 

?> 1 

<- 2 

<? 3 

<-> 4 

<?> 5 

Figure 3.3.2. Numerical 
mapping for categorical 
feature ‘direction’. 

State 
Valu
e 

STA 0 

RST 1 

CON 2 

FIN 3 

INT 4 

ECO 5 

URHPRO 6 

URP 7 

RED 8 

REQ 9 

URN 10 

URH 11 

ACC 12 

RSP 13 

ECR 14 

TXD 15 

NNS 16 

URFIL 17 

NRS 18 

CLO 19 

URF 20 

URO 21 

SRC 22 

DCE 23 

URNPRO 24 

Figure 3.3.3. Numerical 
mapping for categorical 
feature ‘state’. 



8 
 

2. Using Argus, generate .binetflows for each of the windowed .pcaps, extracting the 40 
features as listed in section 3.3.2. 

3. Using the labelled .binetflow included in each scenario, build an initial profile of the 
network traffic by parsing the flows within the file. The traffic profile consists of three 
unique sets of flow IDs – normal, background and botnet – that are used for further 
processing. 

4. For each window, parse the associated .binetflow file to obtain an array of flow IDs and 
a corresponding array of flow feature vectors. 

5. Randomly sample an equal number of non-botnet flows from every window using 
reservoir sampling. A flow is defined as a non-botnet flow if its flow ID is present in 
either the normal or the background flow ID set in the previously generated traffic 
profile. Assign these flows a ground truth label of 0. 

6. Similarly, randomly sample an equal number of botnet flows from windows when the 
botnet is active, using reservoir sampling. A flow is defined as a botnet flow if its flow 
ID is present in the botnet flow ID set in the previously generated traffic profile. Assign 
these flows a ground truth label of 1. 

7. Concatenate the botnet and non-botnet flow feature vectors into a single array and 
convert all NaN, invalid or empty values in vectors to 0 to produce the final array of 
training examples (ݔ). Similarly, concatenate the ground truth labels to produce the 
final array of expected outputs (ݕ). 

8. Zip ݔ and ݕ and randomly shuffle the training set, ensuring that each vector or row in 
the ݔ array continues to correspond to the correct output in the ݕ array. 

 
Using the training dataset, a random forest classifier was trained with 100 estimators to 

perform binary classification on flow feature vectors generated over 300 second windows, i.e. 
output 0 if it determines a feature vector to be representative of a non-botnet flow, or output 
1 if it determines a feature vector to be representative of a botnet flow. Random forests are an 
ensemble learning method which operates by constructing a collection of decision trees, each 
fit on a random subset of features or samples of the entire dataset, and produces an aggregated 
result. The choice of random forests as the classification algorithm for stage 1 was due to its 
robustness and high accuracy in initial tests, making it suitable for our intended purpose (see 
section 4.2.1 for results of initial tests and comparisons with other supervised learning 
algorithms).  
 
3.4 Stage 2: Unsupervised learning (clustering) 
Stage 2 of the detection process applied unsupervised learning on the results of stage 1, and 
examined host-based characteristics, rather than flow-based characteristics. In each window, 
the classifier was first used to identify potential botnet flows. An internal host is defined as 
being involved in botnet communications if it is either the source IP or the destination IP of a 
flow predicted by the classifier as being a botnet flow. For all hosts involved in botnet 
communications, seven host-based features were computed: 
 

1. The total number of predicted botnet flows that the host is involved in. 
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2. The total number of outgoing packets from the host involved in botnet flows. 
3. The total number of incoming packets from the host involved in botnet flows. 
4. The total number of incoming bytes from the host involved in botnet flows. 
5. The total number of outgoing bytes from the host involved in botnet flows. 
6. The total number of unique destination ports the host is communicating with. 
7. The total number of unique destination IPs the host is communicating with. 

 
These features were standardized such that the range of values for each feature had a mean 

of 0 and a standard deviation of 1 (using scikit-learn’s StandardScaler) and were then used to 
form a feature vector for each host. Agglomerative hierarchical clustering was applied on the 
host feature vectors, using the standard Euclidean distance as the distance metric between 
vectors and utilizing Ward linkage. Agglomerative clustering is a ‘bottom-up’ method of cluster 
analysis, in which each data point begins in its own cluster, but are progressively merged into 
other clusters higher up in the hierarchy. Ward linkage, also known as minimum variance 
criterion, ensures that at each merging step, the pair of clusters that leads to the minimum 
increase in total inter-cluster variance is chosen. 
 
 We make the heuristic assumption that the majority of hosts on a network will not be 
infected and only a small minority are infected, which was true for the datasets examined, and 
label the smaller cluster as the anomalous/botnet cluster and the larger cluster as the 
benign/non-botnet cluster. For each window, the hosts in the botnet cluster are assumed to be 
infected during that timeframe of the window; however often a single window is insufficient to 
determine the presence of botnet activity and examining the temporal nature of a host’s cluster 
membership is a more accurate indicator of botnet activity. (See section 4.3 for a demonstration 
of our detection scheme applied in a network monitoring scenario.) 
 

4 Evaluation 

4.1 Results 
 
4.1.1. Stage 1 
Due to the imbalanced nature of the dataset, accuracy is not a good predictor of classifier 
performance as a high accuracy can be achieved simply by classifying the majority of flows as 
non-botnet flows due to there being significantly higher numbers of non-botnet flows compared 
to botnet flows. Thus, in stage 1, the performance of the binary classifier was evaluated with 
metrics such as the true positive rate and true negative rate instead. A true positive is defined 
as a flow vector with a botnet flow ID, during a time window when the botnet is running, that 
is classified as a botnet flow. Similarly, a true negative is a botnet flow vector with a non-
botnet flow ID that is correctly classified as a non-botnet flow. 
 
 A separate classifier was trained for each scenario examined, and the performance of 
the classifier was evaluated on the specific dataset it was trained on. The following table 
describes the number of flow vectors extracted from each dataset: 
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Scenari
o 

Unique 
botnet 
flow IDs 

Unique 
normal 
flow IDs 

Unique 
background 
flow IDs 

Number 
of 
windows 

Average 
number of 
flows per 
window 

Total 
botnet 
flow 
vectors 

Total 
non-
botnet 
flow 
vectors 

5 856 4631 113667 13 32310 2326 417704 

6 4621 7238 394056 52 48911 10960 2532403

7 44 1666 103950 9 47119 308 423766 

9 93438 27749 1100291 125 67714 435076 8029131

11 8155 613 91436 7 45301 8855 308249 

12 1972 7448 265712 30 40159 9234 1195532

13 32866 27183 943512 393 18136 98997 7028311

Figure 4.1.1. Statistics about flow vectors extracted from each scenario. 
 

 True positive rate was calculated as ܴܶܲ ൌ
்௉

்௉ାிே
 and true negative rate was calculated 

as ܴܶܰ ൌ
்ே

்ேାி௉
. The total TPR/TNR was calculated on the sum total of the true positives 

and true negatives across all windows in a dataset, while for the average TPR/TNR reflects 
the average of all individual TPR/TNR values calculated on each window separately. Note 
that in many scenarios the botnet is not active for the first few windows; thus, the true positive 
rate is only calculated during time windows when the botnet is running. 
 

 
Figure 4.1.2. Total TPR/TNR across all scenarios examined. 
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Figure 4.1.3. Average TPR*/TNR across all scenarios examined 

*calculated only during windows when the botnet is running 

 
4.1.2 Stage 2 
The performance evaluation of stage 2 reflects the number of local IP addresses that are 
correctly clustered – a true positive in this context refers to a botnet host that is clustered into 
the anomalous cluster during any window where the botnet is running, while a true negative 
is a non-infected host clustered into the benign cluster. A false positive is any host clustered 
into the anomalous cluster during a window when the botnet is not running, or a non-infected 
host clustered into the anomalous cluster during windows when the botnet is running. Similarly, 
a false negative is a botnet host clustered into the benign cluster during a window when the 
botnet is running. A false negative is a botnet host that was not present in the anomalous 
cluster during a window when the botnet is running – either as a result of being clustered 
incorrectly into the majority cluster, or its flows not being identified by the classifier as botnet 
flows (and thus it would be absent from both clusters as it was not identified as a host involved 
in botnet communications). 
 
 Due to the temporal nature of the windowed captures, Figure 4.1.4 depicts graphs of 
the true positive rate, false positive rate and false negative rate across windows for each dataset 
over all time windows in each scenario. Note that some scenarios (5, 6, 7, 13) only have a single 
infected host, so if multiple false positives occur this is shown as a false positive rate of >1. 
 

Figure 4.1.5 also lists the total true positives, true negatives, false positives and false 
negatives for each scenario, which is a sum of the respective values across all time windows. 
The total TPR/FPR is also calculated for each scenario and summarizes the results: 
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Figure 4.1.4. Graphs of stage 2 TPR/FPR/FNR over time windows.
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Scenari
o 

Total IPs TP FP FN TN TPR TNR 

5 252 9 11 1 231 90.00% 95.45% 

6 513 50 4 0 459 100.00% 99.14% 

7 173 3 8 2 160 60.00% 95.24% 

9 5549 427
15
1 

16
1 

4810
72.62% 96.96% 

11 59 11 7 3 38 78.57% 84.44% 

12 643 44 12 31 556 58.67% 97.89% 

12 3471 392 50 0 3029 100.00% 98.38% 

Figure 4.1.5. Summary of total confusion matrix results for each scenario. 
 

4.2 Discussion 
The classifier performance in stage 1 demonstrates that the selected 40 features are capable of 
distinguishing between botnet and non-botnet flows to a high degree of accuracy (> 89%), even 
if the flows are only generated over fixed-time windows and provide a limited perspective of 
the entire network traffic. The true negative rate is consistently high, but this is likely a 
reflection of the nature of the training set, in which there are significantly more non-botnet 
flows.  
 
 The classifier for scenario 12 had a significantly lower total TPR when compared to 
other scenarios. This may have been due to scenario 12 featuring a P2P botnet, which, unlike 
a traditional botnet with a single command & control server, communicates with a list of 
trusted servers (including other infected machines) in a decentralized manner. The traffic is 
likely to be less structured and have greater variance, appearing more similar to background 
traffic and thus making the classification task more difficult. In contrast, scenarios 6 and 11, 
which are a traditional C&C botnet and an ICMP DDoS botnet respectively, are much more 
likely to have botnet traffic that is more structured and distinguishable from regular network 
traffic, and thus the classifier trained for these scenarios have better performance. 
 

In stage 2, generally, true infected hosts will be consistently clustered into the 
anomalous cluster after the botnet begins running, while non-infected hosts (false positives) 
are not consistently identified as such across consecutive windows. The detection scheme was 
highly effective on scenarios 5, 6 and 13, which each contained one infected host, and 
maintained a TPR of 1.0 throughout the duration of the botnet’s execution. Scenarios 7 and 
11 also featured a TPR rate of 1.0 when the bot begins running, but the detection rate drops 
over subsequent windows. The performance of the detector may have been affected by the 
relatively short duration of these captures. Scenario 9 features a more realistic example of 
botnet traffic on a network, as it contains ten infected hosts. After the botnet begins running, 
a gradual increase in the detection rate is observed, reaching 1.0 during later stages of the 
botnet’s execution. 
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Scenario 12 contained 3 infected hosts. The TPR for scenario 12 fluctuated between 

0.33 and 0.66 during the majority of the botnet’s execution, indicating that 1 or 2 of the 3 
infected hosts were consistently detected. This may have been due to the lower accuracy of the 
scenario 12 classifier in stage 1, which impacts the number of flows identified as botnet flows. 
It is likely that some botnet flows were incorrectly classified by the classifier as benign, resulting 
in a host not being identified as involved in botnet communications.  
 
4.2.1 Comparison of supervised learning algorithms 
We initially tested a variety of supervised learning algorithms (Naïve Bayes, Support Vector 
Machines, Decision Trees, Random Forests) to explore the differences in classifier performance 
and to confirm our hypothesis that the selected 40 features facilitated distinction between 
botnet and non-botnet flows. For each dataset, these tests were performed on flows generated 
over the entire duration of the capture rather than over 300 second windows, using a random 
30% of the entire dataset for training and the remaining 70% for testing. Figure 4.2.1 lists the 
number of total flows, botnet flows, and the size of the training and testing datasets for each 
scenario used in the test: 
 

Scenario Total 
flows 

Botnet 
flows 

Training 
flows 

Testing 
flows 

8 71298 1666 23189 49909 

9 916824 152804 275049 641777 

11 476 2856 856 2000 

12 78696 13116 23608 55088 

13 400902 66817 120270 280632 

Figure 4.2.1. Information about the datasets used in comparing classifier 
performance. 

 
 Figure 4.2.2 shows the performance of various supervised learning algorithms applied 
to the same training datasets and evaluated on the same testing datasets: 
 

While these tests were not particularly robust, the results obtained indicated that 
support vector machines (SVMs) were time consuming to train, and thus were excluded from 
the tests. The results of these tests also demonstrated that Naïve Bayesian classifiers had 
significantly lower classification accuracy than the other algorithms, and while decision trees 
produced high classification accuracy, the algorithm was prone to overfitting. Random forests 
produced similarly high classification accuracy, but are more powerful models than decision 
trees, being able to limit overfitting without substantially increasing error. This suggested that 
random forests would be the most effective supervised learning algorithm for stage 1 of our 
detection process. 
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Figure 4.2.2. Performance of various supervised learning algorithms, compared. 

 
4.2.3 Effect of dataset balance on classifier performance 
In each of the provided scenarios, there is a significantly higher number of non-botnet flows 
when compared to botnet flows. Thus, generating a training dataset becomes difficult as the 
number of botnet flows compared to non-botnet flows included in the training set will influence 
the performance of the model. During initial testing stages, we trained another random forest 
classifier on scenario 9, using a completely balanced dataset containing 10,000 botnet flows and 
10,000 non-botnet flows. 
  
 In the following figures, definitions of average TPR/FPR and total TPR/FPR are 
consistent with previous definitions in section 4.1.1: 
 

 1:10 training set 1:1 training set

Average TPs 3286 6264 
Average FPs 752 2029 
Average FNs 195 41 
Average TNs 63481 62205 
Average TPR 94.21% 99.32% 
Average TNR 98.98% 96.77% 

Figure 4.2.2. Comparison of the average metrics between the two datasets. 
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 1:10 training set 1:1 training set

Total TPs 410758 432220 
Total FPs 93992 253565 
Total FNs 24318 2856 
Total TNs 7935139 7775574 
Total TPR 94.41% 99.34% 
Total TNR 98.83% 96.84% 

Figure 4.2.3. Comparison of the total metrics between the two datasets. 
 
The model trained on the balanced dataset increased in the number of false 

positives by over twice the amount of the model trained on the 1:10 dataset, but also 
reduced false negatives by almost ten times. These results illustrate that it is possible to 
alter model performance and obtain increased TPR at the cost of more false positives, or 
vice-versa. 

 
4.2.4 Cluster visualization using t-SNE 
t-SNE, or t-distributed stochastic neighbor embedding, is a machine learning algorithm for 
dimensionality reduction, embedding data points in a higher dimensional space into two or 
three dimensions for visualization [12]. We utilize t-SNE to reduce the 7-dimensional host feature 
space to 2 dimensions and visualize the data points on a scatter plot in order to visualize the 
clustering process for scenarios 9 and 10, which contain 10 infected hosts each. 
 
 In the following plots, red dots denote true positives, which are botnet hosts correctly 
clustered into the anomalous cluster, and blue dots denote true negatives, which are non-botnet 
hosts correctly clustered into the benign cluster. Red crosses indicate false positives, which are 
non-botnet hosts incorrectly clustered in the anomalous cluster, and blue crosses denote false 
negatives, which are infected hosts incorrectly clustered in the benign cluster. 
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Figure 4.2.4. t-SNE of host feature vectors on some windows in scenario 9 when 
the botnet was inactive. A lack of structure in the underlying data is observed and 
the anomalous cluster consists of a few isolated edge points. 
 

     
Figure 4.2.5. t-SNE of host feature vectors on some windows in scenario 9 when 
the botnet was active. Separation between points corresponding to botnet and non-
botnet hosts is observed, despite the clustering algorithm failing to identify the 
correct clusters in all cases
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From the t-SNE plots, it can be seen that during windows when the botnet is not running, 
there is no apparent structure to the points and the anomalous cluster largely consists of a few 
isolated points that are furthest from the remaining points. However, during windows when 
the botnet is active, the plots clearly indicate some degree of separation between points 
corresponding to botnet hosts and points corresponding to non-botnet hosts.  

 
This was also observed with dataset 10 – although the classifier and clustering process 

produced extremely poor results, the t-SNE plots demonstrated a clear separation between 
botnet and non-botnet hosts, as seen in figure 4.2.3: 

 
 

         
Figure 4.2.6. t-SNE of host feature vectors on some windows in scenario 10 when 
the botnet was inactive. 
 
These plots suggest an underlying structure within the data, implying that although the 

current clustering algorithm does not correctly cluster the infected hosts in all windows, other 
clustering methods may be able to identify the structure and separate infected and non-infected 
hosts with a higher degree of accuracy. 
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Figure 4.2.7. t-SNE of host feature vectors on some windows in scenario 10 when 
the botnet was active. Although the clustering algorithm produced incorrect 
clusters, the intended clusters of botnet and non-botnet hosts are observable. 
 

4.3 Building a proof-of-concept detection and network monitoring system 
To demonstrate the potential practical applications of our detection method in a real-world 
network monitoring scenario, we built a graphical application using PyQt4 [13] and pyqtgraph 
[14] that operates continuously on 300 second windows of network traffic. 
 

The detector utilizes multiple trained classifiers that each detects a different type of 
botnet, and aggregates their outputs to identify botnet flows. Currently, all 7 classifiers that 
trained on each of the CTU-13 scenarios are used concurrently; as these scenarios contain a 
variety of different bots and we believe that they should be sufficient for identifying the 
majority of present-day botnet activity. However, the application is also extensible and 
supports the additional or removal of models, allowing users to customize detection for their 
purposes or to add new models for emerging botnet types. 
 

In each 300 second window, flows are extracted and each model performs classification 
on the flows, corresponding to stage 1 of our detection process A flow is considered to be a 
potential botnet flow if it is classified as malicious by any one of the classifiers, and all such 
flows are then processed in stage 2 of the detection process, in which host-based features are 
generated and host-based clustering is applied. Each host is assigned an instantaneous binary 
score of 0 if it was clustered in the normal cluster, or an instantaneous score of 1 if it was in 
the anomalous cluster. The instantaneous score in that window is then used to update the 
host’s overall score, which is an exponentially weighted moving average (EWMA) of the host’s 
past instantaneous scores, using the parameter ߙ ൌ 0.3. The host’s overall score reflects its 
likelihood of being an infected host. 
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Figure 4.3.1. botd, the machine-learning based botnet detector. 

 
 

EWMA is a method of smoothing time series data that assigns exponentially decreasing 
weights to older data to emphasize on newer, immediate points and their neighborhood. The 
equation for EWMA is: 

௧ݏ ൌ ߙ ⋅ ௧ݔ ൅ ሺ1 െ ሻߙ ⋅  ௧ିଵݏ
 

where 0 ൏ ߙ ൏ 1 is the smoothing factor (a value of ߙ closer to 1 reduces the smoothing), ݏ௧ is 
the new overall host score, ݔ௧ is the instantaneous score at the current time, and ݏ௧ିଵ is the 
previous overall score. EWMA was used to assign scores to hosts due to the observation that 
true infected hosts are consistently clustered into the anomalous cluster across multiple 
windows, while non-infected hosts may occasionally appear in the anomalous cluster as false 
positives but fail to maintain anomalous cluster membership continuously. This scoring method 
ensures that true infected hosts will maintain a high score over time, while false positives may 
obtain an instantaneous score of 1 in some window, but the value will quickly decay over 
subsequent windows.  
 
 The interface of our detector provides two main functions. The upper graph area allows 
users to filter by selected model and selected internal host IP to view a graph of the number 
predicted botnet flows over time by the selected model associated with the selected IP. This 
was based on the observation that when a botnet begins running on a network, a noticeable 
increase in botnet activity should occur, which should be detected by the models. Although a 
number of false positives may occur in any window, resulting in non-botnet flows being 
misclassified as botnet flows, the number of false positives for a model remains a relatively 
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constant number and appears as a standard noise signal, as shown in figures 4.3.2 and 4.3.3. 
In contrast, graphs of true infected hosts display a noticeable increase in botnet flow for a 
specific model, as shown in figures 4.3.3 and 4.3.4. 
 
 The lower part of the interface provides a tabular view of all internal hosts and their 
associated score. We apply a simple heuristic to highlight a host in red if it maintains a score > 
0.9 for the past three consecutive windows, and mark it as an active bot. If a host was 
historically marked active, but is not currently active, it will be highlighted in yellow. All other 
hosts appear white by default. The combination of the host list and the graph provides a rapid 
visual indicator of anomalous behavior on a network, prompting users to check potentially 
suspicious hosts for botnet activity and terminate the associated machines before substantial 
damage or malicious activity can be carried out. 
 

 
Figure 4.3.2. Number of predicted botnet flows by classifier trained on scenario 
9 over time associated with 147.32.84.68, a background host in scenario 9. 
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Figure 4.3.3. Number of predicted botnet flows by classifier trained on scenario 
9 over time associated with 147.32.85.30, a background host in scenario 9. 

 
 

 
Figure 4.3.4. Number of predicted botnet flows by classifier trained on scenario 
9 over time associated with 147.32.84.165, an infected host in scenario 9. 
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Figure 4.3.5. Number of predicted botnet flows by classifier trained on scenario 
9 over time associated with 147.32.84.191, a background host in scenario 9. 

 
 

 The following screenshots demonstrate the usage of botd to detect botnet activity in 
CTU-13 scenario 9: 
 

 
Figure 4.3.6. A window from before the botnet begins running. Various hosts are 
identified as potentially infected, but these are false positives and their score rapidly 
decays over subsequent windows. 
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Figure 4.3.7. A window from the early stages of the botnet infection. True 
infected hosts are beginning to be identified as active bots. 
 
 

 
Figure 4.3.8. A window from a later stage of the infection, where the botnet has 
been active for some time and botnet traffic is at a peak. All infected hosts are 
identified as active bots. 
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Figure 4.3.9. A window from after the botnet is terminated. Previous identified 
hosts remain highlighted as a visual indicator for users to check for anomalies on 
the selected hosts. 

 

5 Conclusion 

The results of this project show that it is possible to distinguish between botnet and non-
botnet network flows to a high degree of accuracy (> 0.89 TPR), even if the flows are generated 
over limited time windows and provide an incomplete representation of the complete network 
traffic profile. This makes time-limited flows suitable for the purpose of real-time detection. 
Furthermore, the two-stage process of classification and clustering is able to effectively identify 
infected hosts for several classes of malware. We demonstrate the practical applications of this 
method method building a prototype real-time detection system and testing it on CTU scenario 
9, successfully identifying all 10 true infected hosts with a minimal number of false positives. 
 
 Although our current clustering method is not able to produce the ideal clusters 
correctly in all windows, t-SNE visualization of the host data points indicates strong 
separability between the botnet hosts and non-botnet hosts. This has implications for further 
research in this area as clustering could be improved by using different algorithms in order to 
detect the underlying structure. 
 

One limitation of our work is that the classifiers are trained on existing botnet data, 
making our detection method potentially vulnerable to new and emerging types of botnets 
which may have different traffic patterns. Furthermore, as we rely on statistical features of 
flows for classification, attackers may evade detection through varying these characteristics if 
they are known. Additionally, our criterion for labelling the normal and anomalous cluster is 
presently only a heuristic that is valid for the datasets we have been examining, and is not 
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true of all networks. Developing a more robust method of identifying normal and anomalous 
clusters based on intra-cluster variance is necessary to generalize this detection scheme to other 
types of botnets. 
  

Appendix A 

The following table lists all flow features extracted with Argus: 
 

Argus field name Feature description 

srcid argus source identifier. 

stime record start time 

ltime record last time. 

flgs flow state flags seen in transaction. 

seq argus sequence number. 

smac, dmac source or destination MAC addr. 

soui, doui oui portion of the source or destination MAC addr 

saddr, daddr source or destination IP addr. 

proto transaction protocol. 

sport, dport source or destination port number. 

stos, dtos source or destination TOS byte value. 

sdsb, ddsb source or destination diff serve byte value. 

sco, dco source or destination IP address country code. 

sttl, dttl src -> dst (sttl) or dst -> src (dttl) TTL value. 

sipid, dipid source or destination IP identifier. 

smpls, dmpls source or destination MPLS identifier. 

spkts, dpkts src -> dst (spkts) or dst -> src (dpkts) packet count. 

sbytes, dbytes 
src -> dst (sbytes) or dst -> src (dbytes) transaction 
bytes. 

sappbytes, dappbytes 
src -> dst (sappbytes) or dst -> src (dappbytes) 
application bytes. 

sload, dload source or destination bits per second. 

sloss, dloss source or destination pkts retransmitted or dropped. 

sgap, dgap 
source or destination bytes missing in the data stream. 
Available after argus-3.0.4 

dir direction of transaction 

sintpkt, dintpkt source or destination interpacket arrival time (mSec). 

sintdist, dintdist 
source or destination interpacket arrival time 
distribution. 

sintpktact, dintpktact 
source or destination active interpacket arrival time 
(mSec). 



27 
 

sintdistact, 
dintdistact 

source or destination active interpacket arrival time 
(mSec). 

sintpktidl, dintpktidl source or destination idle interpacket arrival time (mSec).

sintdistidl, dintdistidl source or destination idle interpacket arrival time (mSec).

sjit, djit source or destination jitter (mSec). 

sjitact, djitact source or destination active jitter (mSec). 

sjitidle, djitidle source or destination idle jitter (mSec). 

state transaction state 

suser, duser source or destination user data buffer. 

swin, dwin source or destination TCP window advertisement. 

svlan, dvlan source or destination VLAN identifier. 

svid, dvid source or destination VLAN identifier. 

svpri, dvpri source or destination VLAN priority. 

srng, erng start or end time for the filter timerange. 

stcpb, dtcpb source or destination TCP base sequence number 

tcprtt 
TCP connection setup round-trip time, the sum 
of ’synack’ and ’ackdat’. 

synack 
TCP connection setup time, the time between the SYN 
and the SYN_ACK packets. 

ackdat 
TCP connection setup time, the time between the 
SYN_ACK and the ACK packets. 

tcpopt 

The TCP connection options seen at initiation. The 
tcpopt indicator consists of a fixed length field, that 
reports presence of any of the TCP options that argus 
tracks. 

inode ICMP intermediate node. 

offset record byte offset infile or stream. 

spktsz, dpktsz 
histogram for the source (spktsz) or destination (dpktsz) 
packet size distribution 

smaxsz, dmaxsz 
maximum packet size for traffic transmitted by the 
source (smaxsz) or destination (dmaxsz). 

sminsz, dminsz 
minimum packet size for traffic transmitted by the source 
or destination. 

dur duration of a flow 

rate, srate, drate packets per second 

trans aggregation record count. 

runtime 
total active flow run time. This value is generated 
through aggregation, and is the sum of the records 
duration. 

mean average duration of aggregated records. 

stddev standard deviation of aggregated duration times. 
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sum total accumulated durations of aggregated records. 

min minimum duration of aggregated records. 

max maximum duration of aggregated records. 

pkts total transaction packet count. 

bytes total transaction bytes. 

appbytes total application bytes. 

load bits per second. 

loss pkts retransmitted or dropped. 

ploss percent pkts retransmitted or dropped. 

sploss, dploss 
percent source or destination pkts retransmitted or 
dropped. 

abr ratio between sappbytes and dappbytes 

 
 
 
 

Appendix B 

The following chart illustrates the relative importances of the selected features as determined 
by the random forest classifier, averaged across all scenarios. 
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